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Figure 1: The pyramid coordinate constraint and the proposed two-pass collision handling produce various collision-aware deformations
(left and right). Plausible friction responses can be incorporated in the proposed method (middle).

Abstract

We present an efficient implementation of the reconstruction of
pyramid coordinates which are used for the deformation of ani-
mated characters. By reformulating the pyramid coordinates as
an optimization problem with one-ring neighborhood constraints,
we can solve the problem using an efficient projective solver. This
greatly improves the overall performance, and makes it easier to
incorporate other geometric constraints. Collisions between the
deformed and kinematic geometries are handled using a two-pass
methodology. By resolving collisions before applying pyramid co-
ordinate constraints, we obtain a consistent result after the con-
straint projection. Dynamic simulation is also possible by modeling
proper constraints and projection operators under the same frame-
work.
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1 Introduction

Pyramid coordinates [Sheffer and Kraevoy 2004] are very useful
for modeling the deformed state soft tissues, such as the skin and
the flesh, of CG characters. We refer readers to the open source
StretchMesh plugin for Maya, which is based on a Jacobi imple-
mentation of pyramid coordinates [Str ]. Typically coordinates are
computed and stored at bind time. An iterative procedure is then
used to reconstruct the mesh in the deformed configuration. In
animation production, the art direction usually requires other con-
straints, such as attraction or volume preservation, to be enforced on
the same character. This complicates the rigging process if the var-
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ious constraints and operators are applied sequentially. In our im-
plementation, we employ a unified optimization framework based
on constraints as described in [Bouaziz et al. 2012; Bouaziz et al.
2014] for the pyramid coordinate reconstruction. The result is a
geometry processing solver which is flexible for future extensions.

The simplest way to handle collisions between the deformed and
other kinematic geometries is to find the vertices which are in-
side the collision surface, and project them onto the nearest surface
points. Although this method is history-independent, it requires
manifold geometry or heuristics to determine penetration. More-
over, the nearest point projection may cause inconsistent results
since the nearest points might change over time. Another way is to
detect the collisions and resolve them after the constraint solve. Al-
though this method is robust, it effectively removes the soft proper-
ties of the pyramid coordinates. If we formulate the vertex-triangle
collision as a constraint described in [Bender et al. 2015] and solve
them (pyramid coordinates and collisions) altogether, there might
be penetrations since the projective solver can only handle soft con-
straints. We present a history-based, two-pass algorithm which re-
solves all collisions after the constraint solve while preserving the
properties of other soft constraints.

2 Pyramid Coordinates Constraint Solver

The pyramid coordinate reconstruction procedure can be reformu-
lated as minimizing the shape proximity function of the input ver-
tices V= {vi,...,Vn}, V1, ...v, € R3,

(V) = wil|Vi — Pi(Vi)ll3, %)
=1

where w; are non-negative weights that control the relative impor-
tance of the constraints, V; C V is the n; vertices involved in shape
constraint C; (n; is equal to one in the case of a pyramid coordinate
constraint) and P;(-) is the projection onto the constraint set C;.

Similar to [Bouaziz et al. 2012], we employ an iterative two-step
strategy to solve the minimization problem. In the first step, a pro-
jection P;(x) of a vertex X is computed while keeping V fixed. Each
vertex X is then updated in the second step by minimizing Equation
(1), keeping P;(x) fixed. Note that in the case of the pyramid coor-
dinate constraint only, we can replace the second step by assigning
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each vertex as its projection without solving a linear system. How-
ever, to incorporate other constraints that introduce a global solve,
forming the matrices and solving the linear system is required. Al-
gorithm 1 describes the nonlinear pyramid coordinate projection
P;(x) for each vertex x, which is equivalent to an iteration of the
reconstruction procedure described in [Sheffer and Kraevoy 2004]
(Section 2.2).

Reformulating the reconstruction process of the pyramid coordi-
nates as constraint projection results in performance improvements
since the projection of each vertex and the linear solve for each co-
ordinate can be executed in parallel.

Algorithm 1 Pyramid Coordinate Projection

Require: one — ring neighbor verticesny, ..., n,
1: procedure PYRAMIDCOORDPROJECT(X)
2: N «— ComputeNormal(x,n1, ...,ny)
for all the neighbor vertices i do
n; < ProjectNeighborsOnTheProjectionPlane(n;)
x «— ComputeMeanValueWeightedPosition(ny, ..., ny)
x «— OffsetNewPosition(x, N)
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3 Collision Handling

Similar to the collision handling in dynamic simulation of de-
formable solids, the typical approach to handling collision is to use
history to decide whether nearby geometries have interpenetrated.
If we apply the history-based approach after the pyramid coordinate
constraint solve, we could have inconsistent results under the same
collision configuration. A key observation is that there might be
large numbers of arbitrary upstream geometric operations prior to
the pyramid coordinate constraints, and the problem can be greatly
simplified if the input vertices of the constraint solver are all in-
tersection free. Therefore we apply a two-pass collision handling
to the pyramid coordinate constraint solver (See figure 2). In the
first pass, prior to the solve, we resolve the collisions on the input
vertices based on their path over time. Continuous collision, and
proximity detection are used to ensure collision-resolution for fast
moving objects. We model the friction in the first pass using the
position-based approach as described in [Bender et al. 2015].

The second pass of our collision handling algorithm is a combi-
nation of a series of collision detections and resolutions embeded
in the constraint projection. After each iteration of solving Equa-
tion (1), the constraint solver is halted and we use the positions of
each vertex between two iterations to detect and resolve the inter-
penetrations. This retains the soft properties of the pyramid coordi-
nates.

Our collision handling only generates reasonable results if the re-
solved vertices are in the vicinity of the input vertices, this is as
expected since the velocity of each vertex is not taken into account
to determine its position. In some cases where interpenetrations are
caused by serious overlapping of the collision objects, the pinched
vertices may be handled by soft collision constraints rather than
hard ones. A more sophisticated failsafe [Baraff et al. 2003] can
also be applied to control the behavior of the pinched vertices.

4 Adding Dynamic Simulation

As shown by Bouaziz et al. [2014] it is very easy to include dy-
namic simualtion under the same framework. In our implemen-
tation, we employ exactly the same constraint projection operator
for dynamic pyramid coordinate constraints. We add a closeness
constraint on each vertex, targeting the position of the input vertex

Algorithm 2 Two-pass Collision Handling

1: 1st pass:
2: for all the vertices i do
3: loop collisionStep
4: ComputeSearchDirection(X;, Xf‘"g ety
5: InterpolateCollisionMesh()
6: if DetectCollision() then x; < ResolveCollision(x;)
7: 2nd pass :
8: loop solverlteration
9: for all the constraints i do
10: ConstraintProject(C;)
11: SolveLinearSystem()
12: for all the vertices i do
13: if DetectCollision() then x; < ResolveCollision(x;)

Figure 2: Our two-pass collision handling resolves penetrations
(small spheres in white) in the first pass (left). The second pass is
executed after each constraint projection, retaining the soft prop-
erty of the pyramid coordinates (right).

which can come from animated input geometry. We can simulate
various material properties on different areas of an animated charac-
ter with different user painted weights for the closeness constraints.
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