
Cartesian Grid Fluid Simulation with Irregular Boundary Voxels (sketch 273)

Doug Roble∗

Digital Domain
Nafees bin Zafar†

Digital Domain
Henrik Falt‡

Digital Domain

a i−1/2,j

a i,j+1/2

u i−1/2, j

vi,j+1/2

n
u i+1/2, j

a i+1/2, j

210

0

1

2

1, 1.5

2, 0.5

a
0,2.5

a
0.5 2

a

1.5, 2
a

a

2.5, 0
a

Figure 1 Figure 2 Figure 3 Figure 4

1 Introduction

There are two grid-based techniques for simulating the motion of
fluid: finite difference and finite element. Finite element methods
fit a deformed grid to the details of the simulation while finite differ-
ence methods impose a regular grid on the simulation details. Most
computer graphics CFD solutions have been based on finite differ-
ence techniques. These are much easier to implement and work
with but details are lost in the regular grid discretization.

This sketch presents a modification to a regular grid finite differ-
ence method so that voxels on the boundary deform to capture more
accurate detail. [Losasso et al. 2004] approached this problem by
refining the simulation using an octree data structure for the veloc-
ity field and surface representation. [Johansen and Colella 1998]
has developed a similar technique to ours, but produced a non-
symmetric matrix that they solved with multi-grid techniques.

In a typical finite difference fluid simulation, the boundary and fluid
surface representations have more detail than the velocity grid. Fig-
ure 1 shows an example of a 2D simulation where a high detail
boundary is embedded in a velocity grid. The boundary is dis-
cretized by marking voxels as either boundary or non-boundary so
that it fits the velocity grid (Figure 2). This introduces grid artifacts
to the simulation. It is quite difficult to simulate a gently sloping
feature - that would discretize into long plateaus of voxels.

We propose a more accurate approach that still retains the simplic-
ity of a regular grid. Instead of marking a voxel as boundary or
non-boundary, we simulate any voxel that has at least some non-
boundary area (Figure 3). This requires some changes to the fluid
simulation, most notably the divergence calculations.

2 Simulation Changes

• First, instead of just marking a voxel as boundary or non-
boundary, we compute the non-boundary area of each of the
faces of a voxel. If a voxel face is completely covered with
boundary, its area is 0.0, if completely open the area is 1.0.

∗e-mail: doug@d2.com
†e-mail:nafees@d2.com
‡e-mail:hfalt@imageworks.com

If the boundary is represented as a level set, this can be done
using a technique similar to marching cubes.

• The divergence must be calculated differently. The key is to
notice that the divergence equation ∇ · ū = 0 forces the mass
flux across each face to balance. And since we are simulating
incompressible fluid, the density of the fluid can be ignored.
So, for a 2D example, this must hold:

ai+1/2, jui+1/2, j − ai−1/2, jui−1/2, j + ai, j+1/2vi, j+1/2 −

ai, j−1/2vi, j−1/2 = 0

where ai+1/2, j is the open area of a face and ui+1/2, j is the
velocity component normal to the face. This form of the
divergence can be derived using the Divergence Theorem.
[Losasso et al. 2004] explain this in detail and arrive at a linear
set of equations:

∑ f aces((∆t∇p) f ace · n̄)A f ace = ∑ f aces(ū∗f ace · n̄)A f ace

• Solving the above equations for p and correcting the velocities
produces divergence free velocities - as long as the areas are
taken into account. Interpolation of the velocity at a point in
the staggered grid must be aware of the area or mass loss/gain
will occur. Figure 4 illustrates some of the details needed in a
typical boundary voxel. Velocities are pushed to the center of
the non-boundary area. If the velocity component of a face is
requested, the true position of the velocity is used. Dirichlet
boundary conditions (ū · n̄ = 0) are enforced using the true
boundary, not the discretized boundary.

These changes to finite difference fluid simulation now track fluid
close to boundaries much more accurately. This reduces volume
loss and the griding artifacts in the fluid.

References

JOHANSEN, H., AND COLELLA, P. 1998. A cartesian grid em-
bedded boundary method for poisson’s equation on irregular do-
mains. Journal of Comp. Physics, 147, 60–85.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Trans. Graph.
23, 3, 457–462.

