
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
DigiPro '15, August 8, 2015, Los Angeles, California.
© 2015 ACM. ISBN 978-1-4503-3718-2/15/08…$15.00
DOI: http://dx.doi.org/10.1145/2791261.2791265

Rapid: An Artist Friendly Particle System

Devon Penney∗

PDI/DreamWorks Animation
Nafees Bin Zafar†

Oriental DreamWorks

Figure 1: Examples of simulations from recent films. Property of DreamWorks Animation

Abstract

A particle system is a heavily used tool in every effects animation
department in the world. In this paper, we re-explore this well un-
derstood, and relatively ancient technique. We present our design of
Rapid, a modern, and easy to use particle dynamics framework that
seamlessly fits into procedural node graphs. We discuss schemes
for minimizing sub-frame evaluation of the dataflow graph, includ-
ing an improved collision model and simple methods for generating
smooth and continuous particle emissions. These techniques com-
bined with improved workflow tools enable artists to build produc-
tion setups faster, and simulate them quicker. The Rapid framework
has been used on hundreds of shots at the studio to produce effects
like water, magic, debris, spray, dirt, embers, and sparks.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Simulation

Keywords: particle simulation, sparse volumes

∗devon.m.penney@gmail.com
†nafees.bin.zafar@dreamworks.com

1 Motivation

Many effects animation systems, such as Houdini, Bifröst, and XSI
ICE utilize a node based operator graph architecture. It provides
a good balance of proceduralism, and a fast authoring process for
users. From the point of view of the software, this design permits
efficient definition and execution of the computation. Within this
type of framework, our users express a strong preference for an im-
perative style of operation where each operator executes an action
on the incoming data, and produces a modified result for the next
operator. Any type of complex simulation system must be archi-
tected to live in this environment, and avoid placing restrictions on
the idioms used by our artists.

A few years ago we discovered that a simple particle system was
unnecessarily difficult to incorporate into our FX setups. We found
particle tools, such as those implemented in Houdini’s DOPs, have
tedious workflows for things like setting up colliders, and also vi-
olated the rule of imperative execution. In addition, having sim-
ulations live in another context than generic procedural modeling
often meant duplicating tool functionality so it could live in both
environments. We set out to create a system that would allow easier
use of particles, while allowing us to leverage existing procedural
point manipulation tools to control simulations.

2 Framework

Our system, called Rapid, is implemented in SideFX’s Houdini sys-
tem. In our mental model for Rapid, we think of dynamics as pro-
cedural modeling operations. Thus, Rapid operators act as surface
operators (SOPs) that modify particles and colliders. We made an
explicit choice in using SOPs to optimize for a majority of use cases
and restrict some of the functionality available in Houdini’s dynam-
ics context (DOPs) for the sake of ease of use.

15

2.1 Artist Workflow

Create

Emit

Collide

Solve

Apply forces
manipulate positions
group particles
etc

Nodes to generate
geometry for
colliders

Nodes to generate
particles to emit

Figure 2: A basic particle simulation chain.

Artists set up and run simulations in SOPs, which leverages an ex-
tensive pre-existing toolset of point manipulation tools. The basic
workflow consists of 4 nodes in a chain, inspired by the workflow
used with DreamWorks’ Flux gas solver [Vroeijenstijn and Hen-
derson 2011]. See figure 2 for the visual layout of the chain. The
nodes are as follows:

Create Creates a simulation context

Emit Emits particles

Collide Adds a collision object

Solve Integrates the particles for 1 frame

We specifically designed this workflow to give the user the impres-
sion of composing a “timestep”. When the user advances the frame
by one the “Solve” node integrates forces and velocities, resolves
collisions, and performs time integration of time based attributes
such as particle age. An implementation detail particular to Houdini
SOPs is that the “Create” node stores a pointer to its data buffer as a
“detail attribute”, which is often called a “uniform” variable in CG
parlance. The output of the solve is posted to the create node on the
next frame by modifying this data buffer, thus enabling a feedback
loop. Typically, artists utilize many point and level set manipulation
tools to control simulations by adding nodes interspersed between
the four listed above. Examples are generating forces, modifying
collision geometry, and performing extensive group manipulations
to do complex behaviors.

2.2 Data Representation

All points and colliders are represented as Houdini geometry point
data and OpenVDB grids [Museth 2013]. This seamless integration
into the host application allows users to utilize the entire ecosystem
of operators available to them, including other solvers. From an
engineering standpoint, avoiding a layer of abstraction reduces the
overhead of data translation, and utilizes Houdini’s copy-on-write
data flow to minimize memory overhead. [Johansson 2013] pre-
sented a similar Houdini based system which utilizes custom data

structures for points. We encourage readers to read his excellent
write-up for a full understanding of the pros and cons.

2.3 Dataflow

When we consider the overall complexity of an effects setup, we
quickly discover that the simulation control component is a very
small portion of this.

A naive implementation requires increasing the number of graph
evaluations proportional to the number of solver substeps. One of
our primary design constraints was to reduce these expensive graph
evaluations. The sub-frame information is necessary for features
like birthing particles, and detecting collisions, thus we needed to
devise custom motion interpolation schemes.

In order to make the system extensible, we also introduced the con-
cept of “Action Operators” which allow developers to register call-
backs that are invoked by the solver at a sub-frame rate. This is
useful in cases where we need sub-frame evaluation, such as when
developing our particle drag implementation [Yuksel et al. 2014],
or custom force fields. This does not handle every imaginable case,
however for common cases we noted significant gains in user effi-
ciency.

3 Emission

3.1 Initial Age

Artists frequently express problems with emitting particles in con-
tinuous streams, which presents itself as spatial and temporal alias-
ing in the integrated particle motion. The simplest and most compu-
tationally expensive way to address this is by increasing the number
of sub-frame timesteps. The root of this issue is that particles are
being emitted continuously in time over the course of a frame, thus
each particle is alive for a portion of that time. Consequently, the
solver must take this fraction into account for time integration of
motion. We address this by separating birthed particles from previ-
ously emitted ones, and integrating their velocity and position for
the correct dt.

Given tbirth, the time a particle is born, and Lbirth, the artist-
supplied age for the born particle, we solve a position update for a
particle:

pt+dt = pt + vt ∗ γ

Where

γ =

{
Lbirth t ≤ tbirth ≤ t+ dt

dt otherwise

We typically give artists a choice for the initial age of particles they
emit if they do not explicitly specify it. There are three choices:

1. Born at the beginning of the frame

2. Born at the end of the frame

3. Born at a random time within a frame

Many times, artists want particles to be at their birth position at
the end of the frame they are born on. For these cases, they would
choose 2 from above to ensure that dt = 0 for the entire frame.

3.2 Fast Moving Emitters

In addition to integrating emitted particles, fast moving emitters of-
ten cause artifacts. The most common solution is to increase solver

16

steps until it resolves the emission shape’s motion. There is a far
more efficient technique of smearing the emission shape across the
frame, where we use a cubic hermite spline, and its derivative for
an inherited velocity.

pinterp = (1 + 2t) (1− t)2 pf−1 + αt (1− t)2 (pf − pf−2)+

t2 (3− 2t) pf + αt2 (t− 1) (pt+1 − pt−1)
(1)

p′interp = 6t3pf−1 + α
(
1− 4t+ 3t2

)
(pf − pf−2)−

6 (t− 1) tpf + αt (3t− 2) (pt+1 − pt−1)
(2)

Points are scattered on the emission mesh at frame f . Mesh vertex
positions on the frames, pf , pf+1, pf−1, and pf−2 are interpolated
onto the particles based on the scattered position. The particle posi-
tion is then placed on the emitter’s motion path according to evalu-
ating pinterp and assigning an inherited velocity based on p′interp.
To do this, each point is given a t on the interval [0, 1] where 0
corresponds with pinterp = pf−1, and 1 gives pinterp = pf .

4 Collisions

We use narrow-band level sets, implemented in OpenVDB, in to
represent collision objects. This use of level sets has been shown
to be efficient, and reliable [Guendelman et al. 2003], [Allen et al.
2007]. The tree structure used by OpenVDB gives us hierarchical
collision detection. Though it is trivial, for the sake of completeness
we will describe our physically inspired collision response model
[Witkin 2001]. Given a particle with velocity vp and collision ob-
ject with velocity vc, the relative speed in the normal direction be-
tween the two objects is:

△vn = n · (vp − vc)

n =
∇ϕ
||∇ϕ||

Where ϕ is the level set function, and n is the normal of the level
set at the point of collision. A particle is considered to be colliding
with an object if the particle is inside the object, and the two bodies
are not separating. i.e. sign(△vn) =< 0.

The instantaneous “incoming” velocity of the particle can be de-
composed as the sum of the non-separating normal component and
the remainder:

v = vn + vt

vn = (v · n)n
vt = v − vn

In our model the normal velocity is reflected across the collision
plane. The collision event is considered to be frictionless, there-
fore the tangential velocities are unaffected. The ratio between the
“outgoing” velocity and the incoming velocity is determined by the
coefficient of restitution, ϵ.

v+
n = −ϵvn (3)

v+
t = vt

The negative sign in (3) indicates geometric reflection. The super-
script, +, indicates outgoing velocity.

Applying these relations we can derive an expression for the outgo-
ing velocity in terms of the incoming velocities.

v+ = v+
n + v+

t

= −ϵvn + vt

= −ϵ(v · n)n+ v − (v · n)n
v+ = v − (1 + ϵ)(v · n)n (4)

This last equation (4) is the total velocity of the particle after the
collision.

4.1 Basic Collision Resolution

The most simple way to resolve collisions between particles and
level sets is to project particles along the level set gradient when
they are inside of a collider:

p = p+ n ∗ ϕ

Note that when ϕ is larger than the narrow-band half width, we
cannot get an accurate n since the particle is inside a sparse
region of the level set. In these cases, the particle is updated by
backtracking along the velocity to the previous position.

(1)

(2)

(3)

(4)

Figure 3: Particle collisions with projecting along the gradient.
(1) shows the particles at t = 0. (2) shows the particles at t = 1
before collision resolution. (3) has particles projected along the
collision gradient to the surface at t = 1. (4) At t = 2, particles
are integrated and stepping occurs after the bounce.

4.2 Improved Collision Resolution

The method from section 4.1 falls apart when many particles that
are in close proximity to each other collide with a surface in 1 solver
step (figure 3). The result is that all colliding particles are projected
to the surface of the level set, and then stepping artifacts occur.
Rather than reduce the timestep, one can estimate the collision po-
sition of each particle, then integrate them post-collision depending

17

on how long they tunneled under the surface of the object. This
method is shown in figure 4.

(1)

(2)

(3)

(4)

Figure 4: Improved particle collisions. (1) shows the particles at
t = 0. (2) shows the particles at t = 1 before collision resolution.
(3) has particles backtracked along their velocity to their estimated
collision location on the surface. (4) At t = 1, collision resolution
ends with particles being integrated for their penetration time.

4.3 Radius for Collisions

In the basic implementation, particle to level set collisions only con-
sider the particle center, and ignore the radius (figure 5). There is
a computationally cheap extension of our collision model to allow
for per-particle radius. The distance to surface, ϕ, is calculated by
querying the level set at the particle center, then the depth the parti-
cle penetrates the surface is estimated as d = r − ϕ where r is the
particle radius.

(1) (2)

Figure 5: Example of a particle with radius colliding against a
level set. (1) shows the particle penetrating the level set. The
dashed blue is the level set narrow-band width around the zero
crossing in solid blue. The penetration depth (red dashed line) is
estimated as described. (2) shows contact resolution.

The level set narrow-band half width must be at least as big as the
largest particle being collided. Thus, it must be expanded accord-
ingly to get correct results. See figure 6 for an illustration of this
issue.

(1) (2)

Figure 6: (1) shows the collision event is not captured because the
narrow-band is too small and does not overlap the particle center.
(2) fixes the problem by increasing the narrow-band width.

4.4 Fast Moving Colliders

When fast moving colliders are interacting with particles, the most
obvious solution is to reduce the timestep until the collider motion
is resolved. This results in many geometry to level set conversions,
when simpler solutions can often be useful. One workaround is to
use rigidly deforming objects as colliders in a fashion similar to
DOPs in Houdini. By deriving the transformation matrices describ-
ing the body’s motion, one can transform the rest frame’s level set
to the current solver time on each substep.

5 Constraints

Simulating granular materials requires modeling particle to particle
collisions, so we decided to use position based dynamics [Macklin
et al. 2014]. This framework has the benefit of easily being able
to model a variety of constraint types, such as distance, pin, and
clumping constraints. Each constraint type is modeled as a sepa-
rate node that fits into the Rapid framework. These nodes provide
the solver with a definition of the constraint function, as well as the
group of particles it acts on. By having a generic interface for writ-
ing constraints, it is easy for even novice C++ programmers to write
their own and have it plug into the system without changing the core
solver. All existing nodes, such as colliders, emitters, and forces,
behave as expected when constraints are used. Figure 7 shows a
test of the constraint system.

5.1 Particle to Particle Collisions

We use a grid to accelerate particle to particle collision detection.
However, we make use of sparse grids by utilizing OpenVDB Point
Index Grids, which store a list of particle indices that are contained
inside a voxel. The voxel width for the grid is sized according to
the user-specified collision radius, R, such that v = 2 ∗ R. By us-
ing sparse grids, we have quick access to potential collisions using
iterators, and far better memory usage than dense grids.

5.2 Arbitrary Radius Particle to Particle Collisions

The above method works well for constant sized particles, but can-
not work when the size varies from particle to particle. In order to
accomplish this, we employ multiple Point Index Grids of differ-
ent sizes. We want to limit the number of grids due to potential for
excessive voxel evaluations to find neighbors, and we also want par-
ticles to fit into grids as tightly as possible to avoid iterating over too
many potential colliders. Thus, we use a simple greedy approach to
segment the particles based on their radii. This method is useful for
cases where you might have several clusters of particles (ie: small,
medium, and large), each of which has a bit of size variation. This
type of distribution is common with debris simulations where we
would want to use particle collisions instead of rigid body dynam-
ics. Note that we often cap the total number of grids since user data
can be unpredictable and the above algorithm will produce an un-

18

Figure 7: Example of a character emerging from a pile of clumpy
sand.

Algorithm 1 Determine Collision Grids

P ← sortRadiiDescending (array of particles)
currGridRadius = radius (P [0])
currgrid← createGrid (2 ∗ currGridRadius)
gridArray.add (currGrid)
for all p in P do

if currGridRadius − radius (p) > maxDifference
then

currGridRadius = radius (p)
currgrid← createGrid (2 ∗ currGridRadius)
gridArray.add (currGrid)

end if
end for

bounded number of grids, depending on maxDifference. Also,
we can calculate an error value that represents how well our sparse
set of grids represent the distribution of radii. This works under the
observation that an ideal scenario exists with zero error when each
particle has a grid sized exactly according to its radius. Mathemat-
ically, the error is:

error =
∑
pi

voxelSize(i)3 − 4

3
πr3i (5)

Where pi is particle i, and ri is its radius. Also voxelSize returns
the size of the grid that contains particle i.

6 Discussion

We have benefited from having a robust collision model, and ac-
curate particle birthing mechanisms. The tradeoff is that our sys-
tem cannot to handle arbitrary geometric primitives for collisions.
Given the availability of high quality levelset generation tools, we
found this constraint to have a negligible impact in artistic flexibil-
ity. The benefit is that artists like the simplicity and flexibility of
this system over using a more generic system like POPs or Maya
Particles.

While we have worked extensively on reducing the dependence on
substepping, there are cases where it is necessary, such as with fast
moving deforming colliders where the previously mentioned rigid
collision model will not work. Also, some emission and sub-frame
forces need to do sub-frame graph evaluations, which does not fit
in our action operator framework. Thus, for such cases, the entire
graph needs to be evaluated at a sub-frame rate. In general, many

shots have made extensive use of the system without this type of
sub-frame graph evaluation.

The past 15 years have seen an explosion (sometimes literally) in
volume based techniques for modeling, simulation, and rendering
[Wrenninge et al. 2010]. It was our opinion that some of the pro-
duction uses of volumetric methods were due to the tools being
newer, and better integrated, and not because they were better. In
the world of modern visual effects, particle systems are extremely
powerful, and not to be taken for granted. Creating a streamlined
interface led to an increase in use, since artists can set up complex
effects quickly with Rapid. The open structure of the node graph,
and wide range of supporting tools have lead to many creative and
impressive effects.

Acknowledgements

The authors would like to thank Kyle Maxwell, David Hill, Jaideep
Khadilkar, Mark Carlson, and Yongning Zhu for their contribu-
tions to Rapid. We would also like to thank Ron Henderson, and
Jonathan Gibbs for their support of the Effects Production Devel-
opment Team. Finally we would like to thank every past and present
member of the Effects Animation department at PDI/DreamWorks
and DreamWorks Animation for inspiring us.

References

ALLEN, C., COHEN, J. M., BLOOM, D., FERREIRA, D. P.,
HASEGAWA, S., AND MCMAHON, C. 2007. Levelsets in Pro-
duction: Spider-man 3. In ACM SIGGRAPH 2007 Sketches,
ACM, New York, NY, USA, SIGGRAPH ’07.

GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. 2003. Non-
convex rigid bodies with stacking. SIGGRAPH ’03: SIGGRAPH
2003 Papers (July).

JOHANSSON, J. 2013. OpenVDB Course: OpenVDB Adoption at
Digital Domain. In ACM SIGGRAPH 2013 Courses, ACM, New
York, NY, USA, SIGGRAPH ’13, 19:1–19:1.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T.-
Y. 2014. Unified Particle Physics for Real-Time Applications.
ACM Transactions on Graphics (TOG) 33, 4, 153.

MUSETH, K. 2013. VDB: High-resolution sparse volumes with
dynamic topology. ACM Transactions on Graphics (TOG) 32,
3, 27.

VROEIJENSTIJN, K., AND HENDERSON, R. D. 2011. Simulating
massive dust in megamind. In ACM SIGGRAPH 2011 Talks,
ACM, New York, NY, USA, SIGGRAPH ’11, 67:1–67:1.

WITKIN, A. 2001. Physically Based Modeling Constrained Dy-
namics. ACM SIGGRAPH 2001 Course Notes.

WRENNINGE, M., BIN ZAFAR, N., CLIFFORD, J., GRAHAM, G.,
PENNEY, D., KONTKANEN, J., TESSENDORF, J., , AND CLIN-
TON, A. 2010. Volumetric Methods in Visual Effects. In ACM
SIGGRAPH 2010 Courses, ACM, New York, NY, USA, SIG-
GRAPH ’10.

YUKSEL, C., MAXWELL, K., AND PETERSON, S. 2014. Shaping
particle simulations with interaction forces. In ACM SIGGRAPH
2014 Talks, ACM, New York, NY, USA, SIGGRAPH ’14, 42:1–
42:1.

19

