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We present an algorithmically efficient and parallelized domain decompo-
sition based approach to solving Poisson’s equation on irregular domains.
Our technique employs the Schur complement method, which permits a
high degree of parallel efficiency on multi-core systems. We create a novel
Schur complement preconditioner which achieves faster convergence, and
requires less computation time and memory. This domain decomposition
method allows us to apply different linear solvers for different regions of the
flow. Subdomains with regular boundaries can be solved with an FFT based
Fast Poisson Solver. We can solve systems with 10243 degrees of freedom,
and demonstrate its use for the pressure projection step of incompressible
liquid and gas simulations. The results demonstrate considerable speedup
over preconditioned conjugate gradient methods commonly employed to
solve such problems, including a multigrid preconditioned conjugate gradi-
ent method.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Parallel

General Terms: Algorithms, Simulation

Additional Key Words and Phrases: parallel computing, Schur complement,
Poisson solver, domain decomposition, fluid simulation.

1. INTRODUCTION

Fluid simulation is widely used in visual effects. Incompressible
flows have proven to be very effective at generating many com-
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pelling effects in computer graphics including free surface flows,
multi-phase and viscoelastic fluids, smoke, and fire element [Fos-
ter and Metaxas 1996; Stam 1999; Bridson 2015].

The projection method for incompressible fluid flow problems
requires solving a Poisson problem to enforce the divergence free
constraint. There are several numerical methods for solving this
equation, like the Finite Difference Method (FDM) and the Finite
Elements Method (FEM) [Press 2007]. The resulting linear system
can be solved with an iterative algorithm like the preconditioned
conjugate gradient (PCG) method [Golub and Van Loan 1996].
The number of iterations required for convergence in commonly
used iterative linear solvers increases drastically with the size of
the problem, making it impractical for simulations with very high
resolutions [Hughes et al. 2007].

Two broad approaches have been developed in computational
sciences to simulate at high resolutions. Solvers parallelized in a
distributed computing model allow simulations to run faster and
utilize larger memory resources. Adaptive solvers support differ-
ent resolutions in different parts of the flow, thereby providing finer
grained control over where the computation time is spent. Methods
like adaptive mesh refinement (AMR) provide greater solution ac-
curacy in “important” flow regions [Berger and Oliger 1984]. In the
context of computer graphics visually interesting regions, such as
areas of boundary interaction or regions close to the camera, are im-
portant. Losasso et al. [2004] developed a method using an octree
grid representation for the flow domain. Several methods utilizing
adaptive tetrahedral discretizations were developed by [Klingner
et al. 2006; Chentanez et al. 2007; Batty et al. 2010]. Ando et
al. [2013] introduce a hybrid method for highly adaptive liquid sim-
ulations using Eulerian tetrahedral meshes. They point out that the
adaptive BCC mesh used is quite expensive to compute. They also
note that artifacts may develop if the adaptivity is too high. English
et al. [2013] propose a novel spatially adaptive method for simulat-
ing free surface incompressible flows using Chimera grid embed-
ding. Ferst et al. [2014] present a method for liquid simulation on
an adaptive octree grid using a hexahedral finite element discretiza-
tion. Kim et al. [2009], Bojsen-Hansen et al. [2013], and Goldade et
al. [2016] provide a clever compromise using low resolution com-
putational solves with high resolution surface tracking. Chentanez
et al. [2014] couple 3D Eulerian, height field, and particle methods
for interactive simulations of certain types of flows. Two general
realizations from surveying previous research are that the use of
complicated dynamic data structures can have a substantial impact
on solver performance and smaller timesteps needed due to higher
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resolutions combined with low-order numerical schemes deployed
in graphics leads to excessive numerical dissipation.

Parallelizing numerical methods also pose significant challenges.
ICPCG cannot be effectively parallelized because it involves sparse
back-substitution. There are several options for solving the Poisson
problem in parallel, such as the multigrid method. The multigrid
method can be used as the preconditioner for the conjugate gradi-
ent method [Ashby et al. 1994; McAdams et al. 2010; Chentanez
and Mueller-Fischer 2012; Tatebe 1993]. Implementing the multi-
grid method in a production environment requires some care in han-
dling thin boundary features when transitioning from fine to coarse
resolutions. These problems are recognized in literature as a weak-
ness of the geometric multigrid method. They can be addressed by
employing boundary aware interpolation and restriction operators
as shown in Dick et al. [2016], or by using the more complex al-
gebraic multigrid method [Falgout 2006]. The Fast Poisson Solver
algorithm based on the fast Fourier transform (FFT) [Golub et al.
1998] offers an elegant high performance solution with an algo-
rithmically lower complexity cost. However, this method requires
a system with constant coefficients, thus it cannot support bound-
aries inside the flow domain. Henderson [2012] combines the iter-
ated orthogonal projections (IOP) of Molemaker et al. [2008], with
a Fast Poisson Solver to achieve fast, high-resolution gas simula-
tions. Yang et al. [2016] modify the IOP framework by redistribut-
ing the divergence to improve convergence and reduce the iteration
count. Unfortunately, IOP cannot ensure a strict divergence free
condition, making it impractical for liquid simulations.

One of our research aims is to devise a parallel Poisson solver
for liquid simulations which can also harness the benefits of an
FFT based solver. We turn to the domain decomposition method
[Mathew 2008; Cai 2003] as the framework for this solver. The do-
main decomposition method is ideal for exploiting parallelism and
is also very efficient for irregular voxelized domains. The compu-
tational speedup is achieved while maintaining the accuracy of the
result. Golas et al. [2012] use domain decomposition to couple vor-
tex singularity methods and Eulerian velocity simulations.

We use the Schur complement decomposition method because
the Schur reduced system is symmetric positive definite, and better
conditioned than the original system [Gallier 2010]. Schur com-
plement is based on a decomposition of the domain into non-
overlapping subdomains. It obtains a reduced system of the Dirich-
let boundary values for subdomains, and once the problem is solved
the global solution can be obtained by solving a local boundary
value problem on each subdomain. Since each subdomain is in-
dependent, the local solves can be executed in parallel. Hender-
son [1997] exploits the Schur complement method to eliminate
rows and columns associated with element interiors. The Direct LU
factorization method used by Henderson is impractical for high res-
olution 3d Poisson problems, because of its O(n3) complexity.

Liu et al. [2016] also present a Schur complement based fluid
solver with good performance characteristics. Their work con-
tributes an optimized implementation of an existing preconditioner
on a hybrid CPU-GPU-many core architecture. They also do not
exploit the independent nature of the subdomains, by using solvers
that are algorithmically more efficient.

We create a novel preconditioner for the Schur complement sys-
tem which is faster than previous work, making this method practi-
cal for large fluid simulations. The solver demonstrates high paral-
lel efficiency on multi-core and multi-processor systems, and takes
less time and memory than a comparable ICPCG solve. Different
matrix solvers are utilized for different sub-problems in Schur com-
plement system according to matrix properties. Regions inside the
flow with simple boundaries utilize the Fast Poisson Solver, while

subdomains with interacting solid boundaries can be represented
with a high quality variational discretization, and solved with PCG
[Batty et al. 2007]. Our method obtains the same accuracy as an
ICPCG based solution of the original matrix.

We incorporate our solver into incompressible liquid, and gas
flow solvers, and compare the simulation results with a standard
solver. The Poisson problem is not the only performance bottle-
neck for high resolution liquid simulations. The FLIP method is the
most common liquid simulation algorithm in animation and visual
effects [Zhu and Bridson 2005]. This method requires large num-
bers of particles which consume a lot of memory, and the transfer
of simulation quantities between particles and grids requires a lot
of processing time. Thus we employ the recently introduced nar-
row band FLIP fluid simulation method (NB-FLIP) for our liquid
simulations because it uses far fewer particles, while providing a
similar visual result [Ferstl et al. 2016].

The contributions of this paper are:

—A novel Schur complement preconditioner which makes the
Schur system converge faster, and requires significantly less time
and memory than the existing Schur preconditioners.

—A framework to apply different solvers to inner subdomains to
allow faster solution of large problems.

—The determination of the different choices of linear solvers for
different decompositions of the Schur complement structure.

—The application of the Schur complement Poisson solver to
solve the pressure projection in liquid simulations with complex
boundaries, with higher parallel efficiency than commonly used
methods.

2. SCHUR COMPLEMENT POISSON SOLVER

The Schur complement method parameterizes the global solu-
tion in terms of the Dirichlet values on the subdomain boundaries
to obtain a reduced system. The preconditioned conjugate gradient
method is employed to solve this system. Several alternative multi-
subdomain preconditioners for a Schur complement system can be
applied [Mathew 2008]. Our research focuses on the pressure pro-
jection step of an incompressible Navier-Stokes simulation which
requires solving the Poisson equation in 3D. We choose the Finite
Difference Method (FDM) because of its simplicity and proven re-
liability in graphics.

Fig. 1. Simple 2D decomposition.

The domain is decomposed into several subdomains as Figure
1. There will be Ω1,Ω2, · · · ,Ωn subdomains. ΩB is the set of the
boundary points surrounding the subdomains. Using this decompo-
sition to form the FDM matrix A, we can get the matrix equation
in a block form as follows.
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Table I. Symbols used in our paper

Symbol Representation

Ωi Subdomain

ΩB Boundary set

W Wirebasket set

ν Cross-points set

Fl Face set


A11 A1B

A22 A2B

. . .
...

Ann AnB
AT1B AT2B · · · ATnB ABB



x1
x2
...
xn
xB

 =


b1
b2
...
bn
bB

 . (1)

The sub-matrices Aii, for i = 1 · · ·n, are the subdomain matri-
ces. ABB is edge boundary matrix. The sub-matrices AiB for i =
1 · · ·n, encode the interactions of the subdomains with the edge
boundary set. The corresponding matrix visualization is shown in
Figure 2. The solution of this system can be sought formally by
block Gaussian elimination, as in Equation 2 and Equation 3.

A11x1 +A1BxB = b1,

A22x2 +A2BxB = b2,

· · · · · · ,
Annxn +AnBxB = bn.

(2)

AT1Bx1 +AT2Bx2 + ...+ATnBxn +ABBxB = bB . (3)

We can rearrange Equation 2 to get xi.

xi = A−1ii (bi −AiBxB). (4)

Plugging xi into Equation 3, we get the following equation for xB .

SxB = b, (5)

where S and b are

S = ABB −
n∑
i=1

ATiBA
−1
ii AiB . (6)

b = bB −
n∑
i=1

ATiBA
−1
ii bi. (7)

Given xB , the inner subdomains can be solved independently in
parallel according to Equation 4. Thus the main goal is to find a
solution to the linear system in Equation 5. The S matrix must be
explicitly assembled if a direct solver is employed to solve this sys-
tem. Calculating the inverse of a matrix hasO(n3) complexity, ren-
dering this approach impractical for our needs. Another approach is
to calculate A−1ii AiB in a column-by-column fashion. This is com-
paratively better, but this still acts as an algorithmic performance
bottleneck.

It has been proven that S is symmetric positive definite and better
conditioned than the original matrix A [Mathew 2008]. The PCG
method can be employed to solve the Schur system. The PCG algo-
rithm does not need the explicit assembly of the Schur complement

matrix, instead only requiring the computation result of the multi-
plication of S with different vectors. For instance, SwB , givenwB ,
may be computed by first solving Aiiwi = AiBwB in parallel for
wi. Then SwB can be computed by the expression:

SwB = ABBwB −
n∑
i=1

ATiBwi

The overall algorithm is shown in Algorithm 1.
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Fig. 2. Matrix visualization. The upper-left is subdomain matrix Aii, the
upper-right is edge boundary matrix ABB , the lower one is transform ma-
trix AiB .

3. SCHUR COMPLEMENT PRECONDITIONER

3.1 Existing Schur Complement Preconditioner

A good preconditioner is required to accelerate the convergence
of the PCG solver used to solve Equation 5. Several precondi-
tioners have been developed for this system, such as Block-Jacobi
[Bramble et al. 1986] with Dirichlet-Neumann [Bjørstad and Wid-
lund 1986], Block-Jacobi with Neumann-Neumann [Bourgat et al.
1989], balancing domain [Mandel 1993], algebraic preconditioner
with probing [Chan and Mathew 1992] and the Eigendecomposi-
tion preconditioner [Tong et al. 1991].

Figure 1 illustrates a 2D domain’s decomposition. A 3D domain
is divided into several parts: inner subdomains, face sets and wire-
basket set. Figure 3 illustrates these components of a 3D decom-
position, and Table I defines the corresponding symbols used in
this paper. In the state of the art preconditioners we surveyed, ΩB
represents the set of wirebasket and face points, and all the existing
preconditioners are based on this structure. We describe the Block
Jacobi Preconditioner (BJP) [Mathew 2008] as an example. The
BJP for S can be defined based on the partition of ΩB into sev-
eral face sets, F1, F2, · · · , Fq , and the wirebasket set W . In matrix
form, such a preconditioner will correspond to the block diagonal
of the following matrix M :

M =


SF1F1

0
. . .

SFqFq

0 SWW

 . (8)
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Algorithm 1 Schur complement conjugate gradient method
1: function SCHURMULTIPLYVEC(schur, vectorB)
2: result← schur.ABB ∗ vectorB
3: for each i ∈ [1, n] in parallel do

bi ← schur.AiB ∗ vectorB
solve : schur.Aiixi = bi

ui ← schur.ATiB ∗ xi
result← result− ui

4: end for
5: Output: result
6: end function
7:
8: function SCHURPRECONDITIONEDCG(schur, x0, b)
9: k ← 0

10: r0← b− SchurMultiplyV ec(schur, x0)
11: while rk 6= 0 do
12: zk ← SchurPreconditioner(schurprecond, rk)
13: k ← k + 1
14: if k = 1 then
15: p1 ← r0
16: else
17: βk ← rTk−1zk−1/r

T
k−2zk−2

18: pk ← zk−1 + βkpk−1
19: end if
20: qk ← SchurMultiplyV ec(schur, pk)
21: αk ← rTk−1zk−1/p

T
k qk

22: xk ← xk−1 + αkpk
23: rk ← rk−1 − αkqk
24: end while
25: x← xk
26: Output: x
27: end function

The matrix M Equation 8 corresponds the Block Jacobi precon-
ditioner and the action of the inverse of the preconditioner satisfies:

M−1 =

q∑
l=1

RTFl
S−1FlFl

RFl
+RTWS

−1
WWRW . (9)

RFl
and RW are defined by the interface restriction and exten-

sion matrices [Mathew 2008] between nodes on boundary set ΩB
and nodes on face setFl or wirebasket setW . We have to get the ap-
proximation of the action of the inverses of the sub-matrices SFlFl

and SWW , since the Schur complement matrix S is not assembled.
For the approximation of S−1FlFl

, either the Dirichlet-Neumann or
the Neumann-Neumann algorithm [Mathew 2008] can be used. Ωi1
and Ωi2 are the two inner subdomains which are connected with the
face set Fl. The Dirichlet-Neumann mechanism uses Ωi1 to get the
preconditioner for Fl.(

Ai1i1 Ai1l
ATi1l All

)(
vi1
vl

)
=

(
0
rl

)
(10)

The subdomain stiffness matrix in Equation 10 corresponds to
the discretization of an elliptic equation on Ωi1 with Neumann
boundary data on Fl [Mathew 2008]. The output vl will be the
preconditioned result for the elements of the face set Fl. Thus solv-
ing this system results in a single component of xB in Equation
5. The Neumann-Neumann preconditioner uses both Ωi1 and Ωi2

to solve Equation 10. It receives two results v1l , v
2
l , and then av-

erages them with a weight α which is commonly set to 0.5. The
block sub-matrix SWW equals AWW when the original domain Ω
is rectangular, and the subdomains are boxes. A seven point stencil
is used for the finite difference discretization because of the prop-
erty that for seven point stencils the nodal values on the wirebasket
will not influence the interior Dirichlet solution in a box subdomain
[Mathew 2008].

The Block Jacobi preconditioner is a very commonly used pre-
conditioner [Mathew 2008], but it is still quite expensive to com-
pute. For example, a Schur complement system has Q face sets
F1, F2, · · · , Fq , so the BJP will have to solve Q matrix equations
for every precondition step. Each of the face solutions are entirely
independent of the other solutions, thus there is no transfer of in-
formation between neighbors which impacts convergence.

Fig. 3. Simple 3D decomposition.

3.2 Our New Schur Complement Preconditioner

We want to develop a preconditioner that converges faster, and
requires less memory than the existing options. First we analyze the
relationship amongst the different parts shown in Figure 3, includ-
ing the subdomains Ωi, the face sets Fl and the wirebasket set W .
In the original Schur structure, the boundary set is the set of the face
points and the wirebasket points. In order to get better performance,
we want the size of the boundary set to be smaller. We recognize
that the subdomains are only connected with the face sets, and dis-
connected with the wirebasket set because of the use of the 7-point
finite difference Laplacian stencil. Therefore the wirebasket set W
can be treated as another subdomain set, and the boundary set ΩB′
contains only the face points Fl. The matrix is structured as:


A11 A1B

′

. . .
...

Ann AnB′
AWW AWB

′

AT
1B
′ · · · AT

nB
′ AT

WB
′ AB′B′



x1
...
xn
xW
xB′

 =


b1
...
bn
bW
bB′

 . (11)

The Schur complement matrix S
′

is shown as follows:

S
′
= AB′B′ −

n∑
i=1

AT
iB
′A−1ii AiB′ −A

T
WB

′A−1WWAWB
′ . (12)

Applying this new structure with BJP will improve the perfor-
mance, however the runtime, memory use, and convergence rates
are still not ideal. We recognize that the wirebasket set W is con-
nected only with face sets and can be used as the subdomain to
approximate the whole boundary set, ΩB′ , which includes only the
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face sets. Neumann boundary conditions are used for other subdo-
mains Ωi, details in Section 3.1. Since only the boundary points
are affected by the Neumann boundary condition, we only need to
modify the AB′B′ submatrix. This new preconditioner looks like:

(
AWW AWB

′

AT
WB

′ NB′B′

)(
vW
vB′

)
=

(
0
rB′

)
(13)

The new preconditioner helps face sets, Fl, communicate with
each other, thus achieving a high convergence rate. It requires less
memory and computation time than the existing Schur precondi-
tioners like BJP, because it only needs to save and solve one linear
equation while BJP needs to save and solve Q linear equations (the
number of subdomains which is >1).

The size of the matrix in Equation 13 will be large with many de-
composition subdomains and degrees of freedom. Using standard
PCG to solve Equation 13 would offer very poor parallel scalabil-
ity. We recognize that the face sets Fl are all disconnected with
each other, and another Schur system can be made for the matrix in
Equation 13. The wirebasket set W will be the boundary set of the
preconditioner’s Schur system. The matrix in Equation 13 will be
adjusted to the following form:


NF1F1

AF1W

NF2F2
AF2W

. . .
...

NFqFq AFqW

ATF1W
ATF2W

· · · ATFqW
AWW



xF1

xF2

...
xFq

xW

 =


bF1

bF2

...
bFq

bW


(14)

We separate the cross-points set ν from the wirebasket set W .
Thus Equation 14 becomes:


NF1F1

AF1W
′

. . .
...

NFqFq AFqW
′

Aνν AνW ′

AT
F1W

′ · · · AT
FqW

′ AT
νW

′ AW ′
W
′



xF1

...
xFq

xν
xW ′

 =


bF1

...
bFq

bν
bW ′


(15)

We solve the Schur system and obtain the formula:

S̃xW ′ = rW ′ (16)

where the S̃ is:

S̃ = AW ′
W
′ −

q∑
l=1

AT
FlW

′N−1FlFl
AFlW

′ −AT
νW

′A−1ννAνW ′ (17)

We again use PCG to solve the Schur system in Equation 16. We
can use the cross points system to obtain the preconditioned system
for S̃. The new wirebasket preconditioner becomes:(

Aνν AνW ′

AT
νW

′ NW ′
W
′

)(
vν
vW ′

)
=

(
0
rW ′

)
. (18)

This preconditioner corresponds to Algorithm 2, Line 17. The ma-
trix in Equation 16 will only be of the size of the wirebasket set,
and it will also have a simple banding structure. We can employ
sparse Cholesky factorization to solve it.

Our preconditioner’s overall algorithm is shown in Algorithm 2
which is very similar to Algorithm 1. The subdomain matrices and
the edge boundary matrix of the preconditioner have a different

Algorithm 2 Our new Schur complement preconditioner
1: function SCHURPCMULTIPLYVEC(schurpre, vectorB)
2: result← schurpre.AW ′

W
′ ∗ vectorB

3: for each l ∈ [1, q + 1] in parallel do
4: if l = q + 1 then

bl ← schur.AνW ′ ∗ vectorB
solve : schur.Aννxl = bl

ul ← schur.AT
νW

′ ∗ xl

5: else 
bl ← schur.AFlW

′ ∗ vectorB
solve : schur.AFlFl

xl = bl

ul ← schur.AT
FlW

′ ∗ xl

6: end if
7: result← result− ul
8: end for
9: Output: result

10: end function
11:
12: function SCHURPRECONDI-

TIONER(schurpre,R,MaxIter)
13: k ← 0
14: r0← R
15: while rk 6= 0 and k < MaxIter do
16: * Equation 18 *
17: zk ← SchurPcPreconditioner(schurpcpre, rk)
18: k ← k + 1
19: if k = 1 then
20: p1 ← r0
21: else
22: βk ← rTk−1zk−1/r

T
k−2zk−2

23: pk ← zk−1 + βkpk−1
24: end if
25: qk ← SchurPcMultiplyV ec(schurpre, pk)
26: αk ← rTk−1zk−1/p

T
k qk

27: xk ← xk−1 + αkpk
28: rk ← rk−1 − αkqk
29: end while
30: Z ← xk
31: Output: Z
32: end function

banding structure than the generic solver. The subdomain matrices
have a 5-point stencil, which is the 2D FDM discretization. We
measured the convergence rates of different solvers for this type
of problem and chose sparse Cholesky factorization to solve this
system. This provides a good tradeoff between performance and
resource utilization. Our convergence tests are discussed in further
detail in section 4.

In order to make our preconditioner better for global information
transfer, the surrounding points of the entire region are added into
the edge set ΩB and the wirebasket set W . For example, we will
choose the left decomposition method in Figure 1 for 2D decom-
position.

Table II shows the comparison between existing Schur pre-
conditioners and our preconditioner. We use the energy equation
f = x2 + y2 + z2 as the test problem, and perform the tests
on a machine with a single 6-core, 3.5GHz processor. A multipre-
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conditioned conjugate gradient scheme, [Bridson and Greif 2006;
Spillane 2016], may also be useful here to adapt the solver to dif-
ferent types of Poisson problems.

Table II. Comparison of Schur preconditioners(5123)
iterations parallel Time

Block-Jacobi with Dirichlet-Neumann 78 4977.33s

Block-Jacobi with Neumann-Neumann 78 7882.56s

Balancing Domain Decomposition 97 4334.88s

Our Preconditioner 10 243.52s

4. SUBDOMAIN SOLVER CHOICE

One of the benefits of the Schur complement decomposition
scheme is that it affords us the ability to choose different direct and
iterative linear solvers depending on the structure of the particu-
lar subdomain. Depending on the structure of the particular subdo-
main one could use multiple methods such as PCG, FFT, multigrid,
Cholesky factorization [Golub and Van Loan 1996], ILUT [Saad
1994] and so on. In our system we use a finite difference discretiza-
tion and focus on three different solvers: PCG, sparse Cholesky
factorization, and the FFT based Fast Poisson Solver algorithm.

The computational complexity of the CG algorithm for a 3D
problem is O(n4/3), and the complexity of the Fast Poisson Solver
isO(nlog(n)) [Demmel 1997]. Though the FFT based fast Poisson
solver method has low computational complexity, it can be used
only when the original PDE has constant coefficients and bound-
aries that coincide with the coordinate lines. The sparse Cholesky
factorization has high memory and computational costs in some
cases. PCG can handle complex internal boundaries, which is one
of the reasons for its popularity.

Table III shows the condition numbers of test matrices gener-
ated by 2D and 3D FDM discretizations. The test examples were
obtained from Mitchell and McClain [2010]. In order to ensure
the matrices have the same size, we compare the condition num-
ber under the condition that they have equal numbers of degrees of
freedom. The results show that the matrix generated by a 2D FDM
discretization is ill conditioned. The Cholesky factorization of such
a matrix has an acceptable number of nonzero elements, and is not
much more expensive than the PCG method.

In the Schur complement formulation this linear system,
Aiixi = bi, has to be solved many times with different bi, but
the same Aii. Therefore computing and reusing the Cholesky fac-
torization of this matrix is an efficient approach. We found that in
general for a 2D system, sparse Cholesky factorization is a suitable
alternative. However, using it for a 3D domain is very expensive,
since the number of nonzero elements in the factored matrices is
relatively high. Furthermore, if the matrix for a 3D problem is well
conditioned, the conjugate gradient algorithm is efficient.

For the 3D case, we employ a combination of the linear equa-
tion solvers in our algorithm. The Schur complement system has
multiple subdomains, some of which meet the requirements for us-
ing the FFT method. For such subdomains, fast FFT-based Poisson
solver can be employed and we choose the PCG method for the
rest. Any preconditioner for PCG method is available such as in-
complete Cholesky preconditioner, modified incomplete Cholesky
preconditioner or diagonal preconditioner as long as the memory is
enough. If there is not enough memory for the incomplete Cholesky
preconditioner, we can choose the diagonal preconditioner, or avoid
using any preconditioner.

Table III. Condition number test

Degrees of freedom
2D 3D

N Condition Number N Condition Number

64 8 196.829 4 94.9691

729 27 62741.6 9 1399.99

4096 64 79567.4 16 9696.85

15625 125 565988 25 43741.8

5. IMPLEMENTATION AND PARALLELIZATION

Multi-threading: Most operations can be run in parallel in our
solver, and the most expensive step is designed to be parallel.
The subdomain linear systems can be solved independently of
other subdomains. Our implementation is designed for symmet-
ric multiprocessing systems with multiple cores, and we utilize
the Intel Thread Building Blocks library for parallelizing opera-
tions [Reinders 2007]. It has to be noted that we consider the step
result = result − ui in the SCHURMULTIPLYVEC function in
Algorithm 1 to be parallel. Given that any element in the result
vector may be updated by at most 3 threads, and the critical region
is only a write operation, we could implement this with a spin-
lock however we have not yet done so. A distributed implemen-
tation would require synchronized communication between hosts.
The boundary set, ΩB , would need to be communicated to the in-
dividual hosts solving the subdomains. This will incur additional
performance overhead, but we hypothesize that it will not change
the basic performance characteristics of our algorithm. We aim to
develop a distributed version of our solver in future work.

Fluid solver: We choose the narrow band FLIP method [Ferstl
et al. 2016] for liquid simulations, and employ our Schur comple-
ment solver for the pressure projection step. Our method can be
used in any fluid simulation algorithm which requires solution to a
Poisson problem. To show the scalability of our algorithm, we also
demonstrate two buoyant smoke simulations.

Domain partitioning: We use a simple regular decomposition
method at present. Details of our decomposition strategy are shown
in Figure 1 and Figure 3. We expect that there are far more optimal
partitioning strategies, and plan to explore this in future work.

Solver Parameters: The settings for the convergence tolerance
and maximum iteration limit for each solver has a significant im-
pact. The tolerance of the subdomain solver should be set smaller
than the tolerance for the Schur iterative method. We use a low
number of iterations for the preconditioner solver, typically 5. This
is a tradeoff between convergence accuracy and runtime perfor-
mance.

6. EXAMPLES AND TEST RESULTS

6.1 Poisson Solver Test

The energy equation is used to test our Schur complement Pois-
son solver compared with the ICPCG solver, and the Poisson equa-
tion ∆f = 6 is the input. In order to study the effect of the Schur
complement decomposition, we compare our solver, using ICPCG
for the inner domains, against a baseline ICPCG based Poisson
solver. We test the execution time and accuracy on a 24 core, 2 pro-
cessor system, with 128GB memory. The performance of the test
problem using the ICPCG solver, and our Schur solver (including
FFT-based inner solvers) is shown in Table IV. Our Schur comple-
ment solver demonstrates a significant performance advantage over
the ICPCG solver when utilizing multiple cores.

Table V demonstrates the fast convergence of our method with
the number of iterations and the RMS error of the results. Our new
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preconditioner has better convergence rate with more domains, be-
cause with more domains the preconditioner is a better approxi-
mation of the original matrix. Thus the algorithm will converge
faster with 163 subdomains than with 83 subdomains. However
with more subdomains, the degrees of freedom in the precondi-
tioner also increases, along with the complexity of the related data
structures. Therefore the performance does not continue to improve
in an unbounded fashion.

Table IV. Runtime comparison (sec) between standard ICPCG and
Schur complement with different decomposition sizes
Resolution: 5123 CPU

Inner solver: ICPCG 1 8 16 24

ICPCG 2846.18 1997.04 1942.07 1934.64

8*8*8 subdomains 6166.51 954.67 548.42 449.71

16*16*16 subdomains 2607.32 417.15 259.83 230.91

8*8*8 subdomains(FFT) 456.75 80.40 55.82 52.43

16*16*16 subdomains(FFT) 463.29 87.92 65.15 58.35

Table V. The iteration number and residual’s RMS error

Resolution: 5123

Iterations RMS
Inner solver: ICPCG

ICPCG 505 4.14E-06

8*8*8 subdomains 21 4.25E-06

16*16*16 subdomains 16 6.05E-06

8*8*8 subdomains(FFT) 21 6.65E-05

16*16*16 subdomains(FFT) 16 1.14E-04

Figure 4 shows the runtime of our Schur complement solver with
different decomposition configurations and subdomain solvers for a
10243 resolution problem. It is worth noting that a standard ICPCG
solver could not solve this problem, because it ran out of memory
on our 128GB test system. Figure 5 shows the parallel speedup for
this solve, as more cores are used. Another interesting observation
is the relatively low parallel speedup of the FFT based solvers. The
algorithmic speedup in these solvers, as seen in the runtime graph,
makes the overhead in our system more apparent. Table VI shows
the raw runtimes, and Table VII shows the iteration number of RMS
error of each solver. The convergence is not affected by the high
resolution.

The ICPCG solver was able to complete successfully for a 5123

resolution problem, and the runtime is graphed in Figure 6. Figure
7 demonstrates the relative speedup of our solver over the standard
ICPCG solver. Our method does have some setup overhead, which
makes it slower in certain configurations when using a small num-
ber of cores.

Both problem sizes demonstrate the algorithmic acceleration af-
forded by the use of the FFT-based Poisson solver. However the
use of this solver depends on the problem domain. If none of the
decompositions meet the requirements of the FFT method, then all
the subdomains will use ICPCG. Our data shows that the solver in
this worst case scenario will still be able to utilize the parallelism
due to the domain decomposition. For our test problem, utilizing
24 cores, using only ICPCG for the subdomains, our solver was a
factor of 8 faster than a standard ICPCG solve. Our algorithm has

some setup overhead, thus a pure FFT-based solve of an appropri-
ate single large domain will be faster. However our implementation
allows varying tile sizes, and a single large subdomain can almost
entirely mitigate this overhead cost.

We observed that in practice our solver requires less memory.
The FFT-based solver avoids the need to form explicit sparse matri-
ces, thus decreasing memory use for simulations with many regular
subdomains. Even if the PCG solver is used, the interior domains
that have identical boundary conditions can share the same sparse
matrix data structure. Finally, each subdomain is much smaller than
the full system, and the temporary vectors required for PCG is
bound by the number of subdomain computation threads.

We would like to point out that the ability to utilize differ-
ent solvers for the subdomains opens up the possibility of trad-
ing increased computation time for reduced memory usage at
a fine grained level. For example if the system does not have
enough memory to utilize ICPCG for all subdomains, we can
choose to deploy something very simple like a diagonal precon-
ditioner in some subdomains. In our test examples with resolution
10243, the Incomplete Cholesky Preconditioned Conjugate Gradi-
ent (ICPCG) method and the Diagonal Preconditioned Conjugate
Gradient (DPCG) method is combined to be the inner solvers, ac-
cording to the available memory we have. The standard ICPCG
needs at least 136GB memory, and is not available to solve this
problem because of the 128GB memory limitation of our machine.

Table VI. Runtime comparison (sec) between different subdomain
solvers in the Schur complement framework, with different

decomposition sizes
Resolution: 10243 CPU

Inner solver: ICPCG + DPCG 1 8 16 24

16*16*16 subdomains 25601.60 4218.24 2711.08 2248.59

32*32*32 subdomains 10874.5 1899.22 1232.69 1156.91

16*16*16 subdomains(FFT) 1811.63 317.73 204.21 177.45

32*32*32 subdomains(FFT) 1839.33 389.19 284.11 262.47

Table VII. The iteration number and residual’s RMS error

Resolution: 10243

iterations RMS
Inner solver: ICPCG + DPCG

16*16*16 subdomains 12 4.63E-05

32*32*32 subdomains 9 6.10E-05

16*16*16 subdomains(FFT) 12 1.34E-04

32*32*32 subdomains(FFT) 9 2.44E-04

We compare our work with McAdams’ MG-PCG implementa-
tion in Table VIII. The two test problems had a sinusoidal right
hand side, one with an immersed Dirichlet boundary and one with
an immersed Neumann boundary. The results with these test prob-
lems show moderate performance gains for our method. We con-
sider that multigrid method has some difficulties in the special treat-
ments required to support thin boundaries.
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Table VIII. Comparison of iterations and runtimes between
MGPCG and Schur complement solver (163 subdomains).

MGPCG iter MGPCG time Schur iter Schur time

Scene1 23 43.35s 15 24.56s

Scene2 24 44.03s 14 22.99s

6.2 Fluid Simulation

We performed tests to show that our solver works well for
high resolution incompressible flow simulations. We choose the
FLIP algorithm [Zhu and Bridson 2005] for liquids, and the
Semi-Lagrangian advection based scheme introduced by Stam for
gaseous flows [Stam 1999]. Considering that we focus on fluid sim-
ulation with high resolution and using normal FLIP will produce
too many particles, the narrow band FLIP fluid simulation solver
[Ferstl et al. 2016] is employed. The following scenes are all sim-
ulated on a 2.5GHz dual processor, 24 core system with 128GB
memory.

Table IX shows the averaged time spent for the pressure
projection step of a FLIP liquid solver, comparing a standard
PCG solver with a Modified Incomplete Cholesky preconditioner
(MIC0) [Bridson and Greif 2006] for a dam break problem. The
PCG implementation used contains some trivial parallelization for
vector-vector and vector-scalar operations. Table X shows the run-
times corresponding to a smoke simulation. Given the high con-
vergence rate of our preconditioner and the ability to apply differ-
ent solvers in different subdomains, even our serial Schur solver is
considerably faster than a standard MIC0-PCG solve. The resource
requirements of our solver are also less.

We used our solver for liquid simulations with fluid-fluid and
fluid-solid interactions (Figure 8, Figure 10, Figure 9). The sur-
face extraction is performed using the OpenVDB library [Museth
2013], and no additional filtering is applied to the surface data. We
also tested our solver for gas simulations with and without internal
solid boundaries (Figure 12, Figure 13). In all cases our Schur com-
plement solver does not exhibit any visual artifacts. The gas simu-
lation examples have greater speedup over a standard MIC0-PCG
based solve, because there are more regular subdomains where the
Fast Poisson Solver can be utilized.

Fig. 4. Runtime for a 10243 problem. Standard ICPCG solver ran out of
memory on our 64GB test system.

Fig. 5. Parallel speedup for 10243 problem.

Fig. 6. Runtime for a 5123 problem. Our algorithm has a performance
overhead in certain subdomain configurations, at low CPU counts.

Fig. 8. Dam break (5123).
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Fig. 7. Speedup compared to a standard ICPCG solve for a 5123 problem.

Fig. 9. Obstacles (5123).

Table IX. Liquid Simulation Time. Resolution 5123

Fluid Scene MIC0-PCG ParalletT Schur SerialT Schur ParallelT Speedup over MIC0-PCG

Dam break 261.49s 128.59s 14.96s 17.47

Double dam break 160.44s 126.85S 14.51s 11.05

Drop objects 163.63s 92.83s 11.47s 14.26

Obstacles 371.50s 187.66s 20.08s 18.50

Table X. Smoke Simulation Time. Resolution 512× 768× 512
Smoke scene MIC0-PCG ParallelT Schur ParallelT Speedup over MIC0-PCG

Plume 678.99s 47.36s 14.33

Plume with sphere 1108.16s 49.66s 22.31

Fig. 10. Moving boundary interaction (417× 65× 517).

Fig. 11. Long river (1000× 175× 1200).

Fig. 12. Plume (512× 768× 512).
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Fig. 13. Obstacles (512× 768× 512).

7. LIMITATIONS

The speedup achieved with our method is due to increased par-
allelism, the fast convergence achieved by our new preconditioner,
and the ability to use a fast FFT-based Poisson solver in interior
regions. However our preconditioner has a serial portion, and if the
preconditioner system is very large the parallel efficiency will be
negatively impacted. It is important to note that for a sufficiently
large problem, the multigrid algorithm will overcome the perfor-
mance advantage of our solver. Using PCG to solve the Schur com-
plement boundary regions will also impact achievable parallel effi-
ciency of a distributed implementation. The scalability is also less
attractive for small resolutions, though the implementation allows
varying tile sizes at runtime to mitigate this problem. The com-
plexity of the algorithm makes a pure GPU implementation a sig-
nificant challenge. We believe that a hybrid CPU-GPU implemen-
tation is a promising direction of future research. Because of our
simple decomposition method, the degrees of freedom for the FFT
solve may not be a power of 2. This is suboptimal for highly op-
timized FFT solver implementations [Henderson 2012]. A robust
partitioner needs to consider optimal tile sizes, while avoiding cre-
ation of sliver domains which can impact the convergence rate of
the system.

8. CONCLUSIONS AND FUTURE WORK

We create a novel preconditioner for the Schur complement
method which makes it practical to use this technique for high res-
olution fluid simulation problems. Using a domain decomposition
approach allows for greater parallelism. The use of different linear
equation solvers in different flow regions accelerates the pressure
projection step and reduces the memory consumption. Our solver is
applicable in a shared memory multiprocessor environment and in
distributed systems, with great potential for scalability. Our method
can be used to solve any problem using a Poisson equation.

Our solver focuses on large scene simulation, and performs well
for high resolution problems 10243 that are commonly encoun-
tered. Developing a robust domain partitioner will be key to achiev-
ing better performance. Our algorithm has high parallel efficiency
and low global communication requirement. Therefore we believe
that our solver will perform well in a distributed computing envi-
ronment. Though there is greater implementation complexity, our
approach minimizes the amount of data that needs to be transferred
between hosts. In addition, we can utilize the memory of each ma-
chine in a distributed system, making simulations with even higher

resolutions possible. The work of Liu et al. [2016] provides com-
pelling details for creating a highly optimized implementation on
a hybrid CPU-GPU architecture. We plan to incorporate their in-
sights into our implementation.
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